unplugged-system/cts/apps/CameraITS/utils/image_processing_utils.py

1122 lines
36 KiB
Python
Raw Normal View History

# Copyright 2013 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processing utility functions."""
import copy
import io
import logging
import math
import os
import sys
import error_util
import numpy
from PIL import Image
from PIL import ImageCms
import capture_request_utils
# The matrix is from JFIF spec
DEFAULT_YUV_TO_RGB_CCM = numpy.matrix([[1.000, 0.000, 1.402],
[1.000, -0.344, -0.714],
[1.000, 1.772, 0.000]])
DEFAULT_YUV_OFFSETS = numpy.array([0, 128, 128])
MAX_LUT_SIZE = 65536
DEFAULT_GAMMA_LUT = numpy.array([
math.floor((MAX_LUT_SIZE-1) * math.pow(i/(MAX_LUT_SIZE-1), 1/2.2) + 0.5)
for i in range(MAX_LUT_SIZE)])
NUM_TRIES = 2
NUM_FRAMES = 4
TEST_IMG_DIR = os.path.join(os.environ['CAMERA_ITS_TOP'], 'test_images')
# Expected adapted primaries in ICC profile per color space
EXPECTED_RX_P3 = 0.682
EXPECTED_RY_P3 = 0.319
EXPECTED_GX_P3 = 0.285
EXPECTED_GY_P3 = 0.675
EXPECTED_BX_P3 = 0.156
EXPECTED_BY_P3 = 0.066
EXPECTED_RX_SRGB = 0.648
EXPECTED_RY_SRGB = 0.331
EXPECTED_GX_SRGB = 0.321
EXPECTED_GY_SRGB = 0.598
EXPECTED_BX_SRGB = 0.156
EXPECTED_BY_SRGB = 0.066
# Chosen empirically - tolerance for the point in triangle test for colorspace
# chromaticities
COLORSPACE_TRIANGLE_AREA_TOL = 0.00028
def convert_image_to_uint8(image):
image *= 255
return image.astype(numpy.uint8)
def assert_props_is_not_none(props):
if not props:
raise AssertionError('props is None')
def convert_capture_to_rgb_image(cap,
props=None,
apply_ccm_raw_to_rgb=True):
"""Convert a captured image object to a RGB image.
Args:
cap: A capture object as returned by its_session_utils.do_capture.
props: (Optional) camera properties object (of static values);
required for processing raw images.
apply_ccm_raw_to_rgb: (Optional) boolean to apply color correction matrix.
Returns:
RGB float-3 image array, with pixel values in [0.0, 1.0].
"""
w = cap['width']
h = cap['height']
if cap['format'] == 'raw10':
assert_props_is_not_none(props)
cap = unpack_raw10_capture(cap)
if cap['format'] == 'raw12':
assert_props_is_not_none(props)
cap = unpack_raw12_capture(cap)
if cap['format'] == 'yuv':
y = cap['data'][0: w * h]
u = cap['data'][w * h: w * h * 5//4]
v = cap['data'][w * h * 5//4: w * h * 6//4]
return convert_yuv420_planar_to_rgb_image(y, u, v, w, h)
elif cap['format'] == 'jpeg' or cap['format'] == 'jpeg_r':
return decompress_jpeg_to_rgb_image(cap['data'])
elif cap['format'] == 'raw' or cap['format'] == 'rawStats':
assert_props_is_not_none(props)
r, gr, gb, b = convert_capture_to_planes(cap, props)
return convert_raw_to_rgb_image(
r, gr, gb, b, props, cap['metadata'], apply_ccm_raw_to_rgb)
elif cap['format'] == 'y8':
y = cap['data'][0: w * h]
return convert_y8_to_rgb_image(y, w, h)
else:
raise error_util.CameraItsError(f"Invalid format {cap['format']}")
def unpack_raw10_capture(cap):
"""Unpack a raw-10 capture to a raw-16 capture.
Args:
cap: A raw-10 capture object.
Returns:
New capture object with raw-16 data.
"""
# Data is packed as 4x10b pixels in 5 bytes, with the first 4 bytes holding
# the MSBs of the pixels, and the 5th byte holding 4x2b LSBs.
w, h = cap['width'], cap['height']
if w % 4 != 0:
raise error_util.CameraItsError('Invalid raw-10 buffer width')
cap = copy.deepcopy(cap)
cap['data'] = unpack_raw10_image(cap['data'].reshape(h, w * 5 // 4))
cap['format'] = 'raw'
return cap
def unpack_raw10_image(img):
"""Unpack a raw-10 image to a raw-16 image.
Output image will have the 10 LSBs filled in each 16b word, and the 6 MSBs
will be set to zero.
Args:
img: A raw-10 image, as a uint8 numpy array.
Returns:
Image as a uint16 numpy array, with all row padding stripped.
"""
if img.shape[1] % 5 != 0:
raise error_util.CameraItsError('Invalid raw-10 buffer width')
w = img.shape[1] * 4 // 5
h = img.shape[0]
# Cut out the 4x8b MSBs and shift to bits [9:2] in 16b words.
msbs = numpy.delete(img, numpy.s_[4::5], 1)
msbs = msbs.astype(numpy.uint16)
msbs = numpy.left_shift(msbs, 2)
msbs = msbs.reshape(h, w)
# Cut out the 4x2b LSBs and put each in bits [1:0] of their own 8b words.
lsbs = img[::, 4::5].reshape(h, w // 4)
lsbs = numpy.right_shift(
numpy.packbits(numpy.unpackbits(lsbs).reshape((h, w // 4, 4, 2)), 3), 6)
# Pair the LSB bits group to 0th pixel instead of 3rd pixel
lsbs = lsbs.reshape(h, w // 4, 4)[:, :, ::-1]
lsbs = lsbs.reshape(h, w)
# Fuse the MSBs and LSBs back together
img16 = numpy.bitwise_or(msbs, lsbs).reshape(h, w)
return img16
def unpack_raw12_capture(cap):
"""Unpack a raw-12 capture to a raw-16 capture.
Args:
cap: A raw-12 capture object.
Returns:
New capture object with raw-16 data.
"""
# Data is packed as 4x10b pixels in 5 bytes, with the first 4 bytes holding
# the MSBs of the pixels, and the 5th byte holding 4x2b LSBs.
w, h = cap['width'], cap['height']
if w % 2 != 0:
raise error_util.CameraItsError('Invalid raw-12 buffer width')
cap = copy.deepcopy(cap)
cap['data'] = unpack_raw12_image(cap['data'].reshape(h, w * 3 // 2))
cap['format'] = 'raw'
return cap
def unpack_raw12_image(img):
"""Unpack a raw-12 image to a raw-16 image.
Output image will have the 12 LSBs filled in each 16b word, and the 4 MSBs
will be set to zero.
Args:
img: A raw-12 image, as a uint8 numpy array.
Returns:
Image as a uint16 numpy array, with all row padding stripped.
"""
if img.shape[1] % 3 != 0:
raise error_util.CameraItsError('Invalid raw-12 buffer width')
w = img.shape[1] * 2 // 3
h = img.shape[0]
# Cut out the 2x8b MSBs and shift to bits [11:4] in 16b words.
msbs = numpy.delete(img, numpy.s_[2::3], 1)
msbs = msbs.astype(numpy.uint16)
msbs = numpy.left_shift(msbs, 4)
msbs = msbs.reshape(h, w)
# Cut out the 2x4b LSBs and put each in bits [3:0] of their own 8b words.
lsbs = img[::, 2::3].reshape(h, w // 2)
lsbs = numpy.right_shift(
numpy.packbits(numpy.unpackbits(lsbs).reshape((h, w // 2, 2, 4)), 3), 4)
# Pair the LSB bits group to pixel 0 instead of pixel 1
lsbs = lsbs.reshape(h, w // 2, 2)[:, :, ::-1]
lsbs = lsbs.reshape(h, w)
# Fuse the MSBs and LSBs back together
img16 = numpy.bitwise_or(msbs, lsbs).reshape(h, w)
return img16
def convert_yuv420_planar_to_rgb_image(y_plane, u_plane, v_plane,
w, h,
ccm_yuv_to_rgb=DEFAULT_YUV_TO_RGB_CCM,
yuv_off=DEFAULT_YUV_OFFSETS):
"""Convert a YUV420 8-bit planar image to an RGB image.
Args:
y_plane: The packed 8-bit Y plane.
u_plane: The packed 8-bit U plane.
v_plane: The packed 8-bit V plane.
w: The width of the image.
h: The height of the image.
ccm_yuv_to_rgb: (Optional) the 3x3 CCM to convert from YUV to RGB.
yuv_off: (Optional) offsets to subtract from each of Y,U,V values.
Returns:
RGB float-3 image array, with pixel values in [0.0, 1.0].
"""
y = numpy.subtract(y_plane, yuv_off[0])
u = numpy.subtract(u_plane, yuv_off[1]).view(numpy.int8)
v = numpy.subtract(v_plane, yuv_off[2]).view(numpy.int8)
u = u.reshape(h // 2, w // 2).repeat(2, axis=1).repeat(2, axis=0)
v = v.reshape(h // 2, w // 2).repeat(2, axis=1).repeat(2, axis=0)
yuv = numpy.dstack([y, u.reshape(w * h), v.reshape(w * h)])
flt = numpy.empty([h, w, 3], dtype=numpy.float32)
flt.reshape(w * h * 3)[:] = yuv.reshape(h * w * 3)[:]
flt = numpy.dot(flt.reshape(w * h, 3), ccm_yuv_to_rgb.T).clip(0, 255)
rgb = numpy.empty([h, w, 3], dtype=numpy.uint8)
rgb.reshape(w * h * 3)[:] = flt.reshape(w * h * 3)[:]
return rgb.astype(numpy.float32) / 255.0
def decompress_jpeg_to_rgb_image(jpeg_buffer):
"""Decompress a JPEG-compressed image, returning as an RGB image.
Args:
jpeg_buffer: The JPEG stream.
Returns:
A numpy array for the RGB image, with pixels in [0,1].
"""
img = Image.open(io.BytesIO(jpeg_buffer))
w = img.size[0]
h = img.size[1]
return numpy.array(img).reshape((h, w, 3)) / 255.0
def decompress_jpeg_to_yuv_image(jpeg_buffer):
"""Decompress a JPEG-compressed image, returning as a YUV image.
Args:
jpeg_buffer: The JPEG stream.
Returns:
A numpy array for the YUV image, with pixels in [0,1].
"""
img = Image.open(io.BytesIO(jpeg_buffer))
img = img.convert('YCbCr')
w = img.size[0]
h = img.size[1]
return numpy.array(img).reshape((h, w, 3)) / 255.0
def extract_luma_from_patch(cap, patch_x, patch_y, patch_w, patch_h):
"""Extract luma from capture."""
y, _, _ = convert_capture_to_planes(cap)
patch = get_image_patch(y, patch_x, patch_y, patch_w, patch_h)
luma = compute_image_means(patch)[0]
return luma
def convert_image_to_numpy_array(image_path):
"""Converts image at image_path to numpy array and returns the array.
Args:
image_path: file path
Returns:
numpy array
"""
if not os.path.exists(image_path):
raise AssertionError(f'{image_path} does not exist.')
image = Image.open(image_path)
return numpy.array(image)
def convert_capture_to_planes(cap, props=None):
"""Convert a captured image object to separate image planes.
Decompose an image into multiple images, corresponding to different planes.
For YUV420 captures ("yuv"):
Returns Y,U,V planes, where the Y plane is full-res and the U,V planes
are each 1/2 x 1/2 of the full res.
For Bayer captures ("raw", "raw10", "raw12", or "rawStats"):
Returns planes in the order R,Gr,Gb,B, regardless of the Bayer pattern
layout. For full-res raw images ("raw", "raw10", "raw12"), each plane
is 1/2 x 1/2 of the full res. For "rawStats" images, the mean image
is returned.
For JPEG captures ("jpeg"):
Returns R,G,B full-res planes.
Args:
cap: A capture object as returned by its_session_utils.do_capture.
props: (Optional) camera properties object (of static values);
required for processing raw images.
Returns:
A tuple of float numpy arrays (one per plane), consisting of pixel values
in the range [0.0, 1.0].
"""
w = cap['width']
h = cap['height']
if cap['format'] == 'raw10':
assert_props_is_not_none(props)
cap = unpack_raw10_capture(cap)
if cap['format'] == 'raw12':
assert_props_is_not_none(props)
cap = unpack_raw12_capture(cap)
if cap['format'] == 'yuv':
y = cap['data'][0:w * h]
u = cap['data'][w * h:w * h * 5 // 4]
v = cap['data'][w * h * 5 // 4:w * h * 6 // 4]
return ((y.astype(numpy.float32) / 255.0).reshape(h, w, 1),
(u.astype(numpy.float32) / 255.0).reshape(h // 2, w // 2, 1),
(v.astype(numpy.float32) / 255.0).reshape(h // 2, w // 2, 1))
elif cap['format'] == 'jpeg':
rgb = decompress_jpeg_to_rgb_image(cap['data']).reshape(w * h * 3)
return (rgb[::3].reshape(h, w, 1), rgb[1::3].reshape(h, w, 1),
rgb[2::3].reshape(h, w, 1))
elif cap['format'] == 'raw':
assert_props_is_not_none(props)
white_level = float(props['android.sensor.info.whiteLevel'])
img = numpy.ndarray(
shape=(h * w,), dtype='<u2', buffer=cap['data'][0:w * h * 2])
img = img.astype(numpy.float32).reshape(h, w) / white_level
# Crop the raw image to the active array region.
if (props.get('android.sensor.info.preCorrectionActiveArraySize') is
not None and
props.get('android.sensor.info.pixelArraySize') is not None):
# Note that the Rect class is defined such that the left,top values
# are "inside" while the right,bottom values are "outside"; that is,
# it's inclusive of the top,left sides only. So, the width is
# computed as right-left, rather than right-left+1, etc.
wfull = props['android.sensor.info.pixelArraySize']['width']
hfull = props['android.sensor.info.pixelArraySize']['height']
xcrop = props['android.sensor.info.preCorrectionActiveArraySize']['left']
ycrop = props['android.sensor.info.preCorrectionActiveArraySize']['top']
wcrop = props['android.sensor.info.preCorrectionActiveArraySize'][
'right'] - xcrop
hcrop = props['android.sensor.info.preCorrectionActiveArraySize'][
'bottom'] - ycrop
if not wfull >= wcrop >= 0:
raise AssertionError(f'wcrop: {wcrop} not in wfull: {wfull}')
if not hfull >= hcrop >= 0:
raise AssertionError(f'hcrop: {hcrop} not in hfull: {hfull}')
if not wfull - wcrop >= xcrop >= 0:
raise AssertionError(f'xcrop: {xcrop} not in wfull-crop: {wfull-wcrop}')
if not hfull - hcrop >= ycrop >= 0:
raise AssertionError(f'ycrop: {ycrop} not in hfull-crop: {hfull-hcrop}')
if w == wfull and h == hfull:
# Crop needed; extract the center region.
img = img[ycrop:ycrop + hcrop, xcrop:xcrop + wcrop]
w = wcrop
h = hcrop
elif w == wcrop and h == hcrop:
logging.debug('Image is already cropped.No cropping needed.')
# pylint: disable=pointless-statement
None
else:
raise error_util.CameraItsError('Invalid image size metadata')
# Separate the image planes.
imgs = [
img[::2].reshape(w * h // 2)[::2].reshape(h // 2, w // 2, 1),
img[::2].reshape(w * h // 2)[1::2].reshape(h // 2, w // 2, 1),
img[1::2].reshape(w * h // 2)[::2].reshape(h // 2, w // 2, 1),
img[1::2].reshape(w * h // 2)[1::2].reshape(h // 2, w // 2, 1)
]
idxs = get_canonical_cfa_order(props)
return [imgs[i] for i in idxs]
elif cap['format'] == 'rawStats':
assert_props_is_not_none(props)
white_level = float(props['android.sensor.info.whiteLevel'])
# pylint: disable=unused-variable
mean_image, var_image = unpack_rawstats_capture(cap)
idxs = get_canonical_cfa_order(props)
return [mean_image[:, :, i] / white_level for i in idxs]
else:
raise error_util.CameraItsError(f"Invalid format {cap['format']}")
def downscale_image(img, f):
"""Shrink an image by a given integer factor.
This function computes output pixel values by averaging over rectangular
regions of the input image; it doesn't skip or sample pixels, and all input
image pixels are evenly weighted.
If the downscaling factor doesn't cleanly divide the width and/or height,
then the remaining pixels on the right or bottom edge are discarded prior
to the downscaling.
Args:
img: The input image as an ndarray.
f: The downscaling factor, which should be an integer.
Returns:
The new (downscaled) image, as an ndarray.
"""
h, w, chans = img.shape
f = int(f)
assert f >= 1
h = (h//f)*f
w = (w//f)*f
img = img[0:h:, 0:w:, ::]
chs = []
for i in range(chans):
ch = img.reshape(h*w*chans)[i::chans].reshape(h, w)
ch = ch.reshape(h, w//f, f).mean(2).reshape(h, w//f)
ch = ch.T.reshape(w//f, h//f, f).mean(2).T.reshape(h//f, w//f)
chs.append(ch.reshape(h*w//(f*f)))
img = numpy.vstack(chs).T.reshape(h//f, w//f, chans)
return img
def convert_raw_to_rgb_image(r_plane, gr_plane, gb_plane, b_plane, props,
cap_res, apply_ccm_raw_to_rgb=True):
"""Convert a Bayer raw-16 image to an RGB image.
Includes some extremely rudimentary demosaicking and color processing
operations; the output of this function shouldn't be used for any image
quality analysis.
Args:
r_plane:
gr_plane:
gb_plane:
b_plane: Numpy arrays for each color plane
in the Bayer image, with pixels in the [0.0, 1.0] range.
props: Camera properties object.
cap_res: Capture result (metadata) object.
apply_ccm_raw_to_rgb: (Optional) boolean to apply color correction matrix.
Returns:
RGB float-3 image array, with pixel values in [0.0, 1.0]
"""
# Values required for the RAW to RGB conversion.
assert_props_is_not_none(props)
white_level = float(props['android.sensor.info.whiteLevel'])
black_levels = props['android.sensor.blackLevelPattern']
gains = cap_res['android.colorCorrection.gains']
ccm = cap_res['android.colorCorrection.transform']
# Reorder black levels and gains to R,Gr,Gb,B, to match the order
# of the planes.
black_levels = [get_black_level(i, props, cap_res) for i in range(4)]
gains = get_gains_in_canonical_order(props, gains)
# Convert CCM from rational to float, as numpy arrays.
ccm = numpy.array(capture_request_utils.rational_to_float(ccm)).reshape(3, 3)
# Need to scale the image back to the full [0,1] range after subtracting
# the black level from each pixel.
scale = white_level / (white_level - max(black_levels))
# Three-channel black levels, normalized to [0,1] by white_level.
black_levels = numpy.array(
[b / white_level for b in [black_levels[i] for i in [0, 1, 3]]])
# Three-channel gains.
gains = numpy.array([gains[i] for i in [0, 1, 3]])
h, w = r_plane.shape[:2]
img = numpy.dstack([r_plane, (gr_plane + gb_plane) / 2.0, b_plane])
img = (((img.reshape(h, w, 3) - black_levels) * scale) * gains).clip(0.0, 1.0)
if apply_ccm_raw_to_rgb:
img = numpy.dot(
img.reshape(w * h, 3), ccm.T).reshape((h, w, 3)).clip(0.0, 1.0)
return img
def convert_y8_to_rgb_image(y_plane, w, h):
"""Convert a Y 8-bit image to an RGB image.
Args:
y_plane: The packed 8-bit Y plane.
w: The width of the image.
h: The height of the image.
Returns:
RGB float-3 image array, with pixel values in [0.0, 1.0].
"""
y3 = numpy.dstack([y_plane, y_plane, y_plane])
rgb = numpy.empty([h, w, 3], dtype=numpy.uint8)
rgb.reshape(w * h * 3)[:] = y3.reshape(w * h * 3)[:]
return rgb.astype(numpy.float32) / 255.0
def write_image(img, fname, apply_gamma=False, is_yuv=False):
"""Save a float-3 numpy array image to a file.
Supported formats: PNG, JPEG, and others; see PIL docs for more.
Image can be 3-channel, which is interpreted as RGB or YUV, or can be
1-channel, which is greyscale.
Can optionally specify that the image should be gamma-encoded prior to
writing it out; this should be done if the image contains linear pixel
values, to make the image look "normal".
Args:
img: Numpy image array data.
fname: Path of file to save to; the extension specifies the format.
apply_gamma: (Optional) apply gamma to the image prior to writing it.
is_yuv: Whether the image is in YUV format.
"""
if apply_gamma:
img = apply_lut_to_image(img, DEFAULT_GAMMA_LUT)
(h, w, chans) = img.shape
if chans == 3:
if not is_yuv:
Image.fromarray((img * 255.0).astype(numpy.uint8), 'RGB').save(fname)
else:
Image.fromarray((img * 255.0).astype(numpy.uint8), 'YCbCr').save(fname)
elif chans == 1:
img3 = (img * 255.0).astype(numpy.uint8).repeat(3).reshape(h, w, 3)
Image.fromarray(img3, 'RGB').save(fname)
else:
raise error_util.CameraItsError('Unsupported image type')
def read_image(fname):
"""Read image function to match write_image() above."""
return Image.open(fname)
def apply_lut_to_image(img, lut):
"""Applies a LUT to every pixel in a float image array.
Internally converts to a 16b integer image, since the LUT can work with up
to 16b->16b mappings (i.e. values in the range [0,65535]). The lut can also
have fewer than 65536 entries, however it must be sized as a power of 2
(and for smaller luts, the scale must match the bitdepth).
For a 16b lut of 65536 entries, the operation performed is:
lut[r * 65535] / 65535 -> r'
lut[g * 65535] / 65535 -> g'
lut[b * 65535] / 65535 -> b'
For a 10b lut of 1024 entries, the operation becomes:
lut[r * 1023] / 1023 -> r'
lut[g * 1023] / 1023 -> g'
lut[b * 1023] / 1023 -> b'
Args:
img: Numpy float image array, with pixel values in [0,1].
lut: Numpy table encoding a LUT, mapping 16b integer values.
Returns:
Float image array after applying LUT to each pixel.
"""
n = len(lut)
if n <= 0 or n > MAX_LUT_SIZE or (n & (n - 1)) != 0:
raise error_util.CameraItsError(f'Invalid arg LUT size: {n}')
m = float(n - 1)
return (lut[(img * m).astype(numpy.uint16)] / m).astype(numpy.float32)
def get_gains_in_canonical_order(props, gains):
"""Reorders the gains tuple to the canonical R,Gr,Gb,B order.
Args:
props: Camera properties object.
gains: List of 4 values, in R,G_even,G_odd,B order.
Returns:
List of gains values, in R,Gr,Gb,B order.
"""
cfa_pat = props['android.sensor.info.colorFilterArrangement']
if cfa_pat in [0, 1]:
# RGGB or GRBG, so G_even is Gr
return gains
elif cfa_pat in [2, 3]:
# GBRG or BGGR, so G_even is Gb
return [gains[0], gains[2], gains[1], gains[3]]
else:
raise error_util.CameraItsError('Not supported')
def get_black_level(chan, props, cap_res=None):
"""Return the black level to use for a given capture.
Uses a dynamic value from the capture result if available, else falls back
to the static global value in the camera characteristics.
Args:
chan: The channel index, in canonical order (R, Gr, Gb, B).
props: The camera properties object.
cap_res: A capture result object.
Returns:
The black level value for the specified channel.
"""
if (cap_res is not None and
'android.sensor.dynamicBlackLevel' in cap_res and
cap_res['android.sensor.dynamicBlackLevel'] is not None):
black_levels = cap_res['android.sensor.dynamicBlackLevel']
else:
black_levels = props['android.sensor.blackLevelPattern']
idxs = get_canonical_cfa_order(props)
ordered_black_levels = [black_levels[i] for i in idxs]
return ordered_black_levels[chan]
def get_canonical_cfa_order(props):
"""Returns a mapping to the standard order R,Gr,Gb,B.
Returns a mapping from the Bayer 2x2 top-left grid in the CFA to the standard
order R,Gr,Gb,B.
Args:
props: Camera properties object.
Returns:
List of 4 integers, corresponding to the positions in the 2x2 top-
left Bayer grid of R,Gr,Gb,B, where the 2x2 grid is labeled as
0,1,2,3 in row major order.
"""
# Note that raw streams aren't croppable, so the cropRegion doesn't need
# to be considered when determining the top-left pixel color.
cfa_pat = props['android.sensor.info.colorFilterArrangement']
if cfa_pat == 0:
# RGGB
return [0, 1, 2, 3]
elif cfa_pat == 1:
# GRBG
return [1, 0, 3, 2]
elif cfa_pat == 2:
# GBRG
return [2, 3, 0, 1]
elif cfa_pat == 3:
# BGGR
return [3, 2, 1, 0]
else:
raise error_util.CameraItsError('Not supported')
def unpack_rawstats_capture(cap):
"""Unpack a rawStats capture to the mean and variance images.
Args:
cap: A capture object as returned by its_session_utils.do_capture.
Returns:
Tuple (mean_image var_image) of float-4 images, with non-normalized
pixel values computed from the RAW16 images on the device
"""
if cap['format'] != 'rawStats':
raise AssertionError(f"Unpack fmt != rawStats: {cap['format']}")
w = cap['width']
h = cap['height']
img = numpy.ndarray(shape=(2 * h * w * 4,), dtype='<f', buffer=cap['data'])
analysis_image = img.reshape((2, h, w, 4))
mean_image = analysis_image[0, :, :, :].reshape(h, w, 4)
var_image = analysis_image[1, :, :, :].reshape(h, w, 4)
return mean_image, var_image
def get_image_patch(img, xnorm, ynorm, wnorm, hnorm):
"""Get a patch (tile) of an image.
Args:
img: Numpy float image array, with pixel values in [0,1].
xnorm:
ynorm:
wnorm:
hnorm: Normalized (in [0,1]) coords for the tile.
Returns:
Numpy float image array of the patch.
"""
hfull = img.shape[0]
wfull = img.shape[1]
xtile = int(math.ceil(xnorm * wfull))
ytile = int(math.ceil(ynorm * hfull))
wtile = int(math.floor(wnorm * wfull))
htile = int(math.floor(hnorm * hfull))
if len(img.shape) == 2:
return img[ytile:ytile + htile, xtile:xtile + wtile].copy()
else:
return img[ytile:ytile + htile, xtile:xtile + wtile, :].copy()
def compute_image_means(img):
"""Calculate the mean of each color channel in the image.
Args:
img: Numpy float image array, with pixel values in [0,1].
Returns:
A list of mean values, one per color channel in the image.
"""
means = []
chans = img.shape[2]
for i in range(chans):
means.append(numpy.mean(img[:, :, i], dtype=numpy.float64))
return means
def compute_image_variances(img):
"""Calculate the variance of each color channel in the image.
Args:
img: Numpy float image array, with pixel values in [0,1].
Returns:
A list of variance values, one per color channel in the image.
"""
variances = []
chans = img.shape[2]
for i in range(chans):
variances.append(numpy.var(img[:, :, i], dtype=numpy.float64))
return variances
def compute_image_sharpness(img):
"""Calculate the sharpness of input image.
Args:
img: numpy float RGB/luma image array, with pixel values in [0,1].
Returns:
Sharpness estimation value based on the average of gradient magnitude.
Larger value means the image is sharper.
"""
chans = img.shape[2]
if chans != 1 and chans != 3:
raise AssertionError(f'Not RGB or MONO image! depth: {chans}')
if chans == 1:
luma = img[:, :, 0]
else:
luma = convert_rgb_to_grayscale(img)
gy, gx = numpy.gradient(luma)
return numpy.average(numpy.sqrt(gy*gy + gx*gx))
def compute_image_max_gradients(img):
"""Calculate the maximum gradient of each color channel in the image.
Args:
img: Numpy float image array, with pixel values in [0,1].
Returns:
A list of gradient max values, one per color channel in the image.
"""
grads = []
chans = img.shape[2]
for i in range(chans):
grads.append(numpy.amax(numpy.gradient(img[:, :, i])))
return grads
def compute_image_snrs(img):
"""Calculate the SNR (dB) of each color channel in the image.
Args:
img: Numpy float image array, with pixel values in [0,1].
Returns:
A list of SNR values in dB, one per color channel in the image.
"""
means = compute_image_means(img)
variances = compute_image_variances(img)
std_devs = [math.sqrt(v) for v in variances]
snrs = [20 * math.log10(m/s) for m, s in zip(means, std_devs)]
return snrs
def convert_rgb_to_grayscale(img):
"""Convert and 3-D array RGB image to grayscale image.
Args:
img: numpy float RGB/luma image array, with pixel values in [0,1].
Returns:
2-D grayscale image
"""
chans = img.shape[2]
if chans != 3:
raise AssertionError(f'Not an RGB image! Depth: {chans}')
return 0.299*img[:, :, 0] + 0.587*img[:, :, 1] + 0.114*img[:, :, 2]
def normalize_img(img):
"""Normalize the image values to between 0 and 1.
Args:
img: 2-D numpy array of image values
Returns:
Normalized image
"""
return (img - numpy.amin(img))/(numpy.amax(img) - numpy.amin(img))
def rotate_img_per_argv(img):
"""Rotate an image 180 degrees if "rotate" is in argv.
Args:
img: 2-D numpy array of image values
Returns:
Rotated image
"""
img_out = img
if 'rotate180' in sys.argv:
img_out = numpy.fliplr(numpy.flipud(img_out))
return img_out
def stationary_lens_cap(cam, req, fmt):
"""Take up to NUM_TRYS caps and save the 1st one with lens stationary.
Args:
cam: open device session
req: capture request
fmt: format for capture
Returns:
capture
"""
tries = 0
done = False
reqs = [req] * NUM_FRAMES
while not done:
logging.debug('Waiting for lens to move to correct location.')
cap = cam.do_capture(reqs, fmt)
done = (cap[NUM_FRAMES - 1]['metadata']['android.lens.state'] == 0)
logging.debug('status: %s', done)
tries += 1
if tries == NUM_TRIES:
raise error_util.CameraItsError('Cannot settle lens after %d tries!' %
tries)
return cap[NUM_FRAMES - 1]
def compute_image_rms_difference_1d(rgb_x, rgb_y):
"""Calculate the RMS difference between 2 RBG images as 1D arrays.
Args:
rgb_x: image array
rgb_y: image array
Returns:
rms_diff
"""
len_rgb_x = len(rgb_x)
len_rgb_y = len(rgb_y)
if len_rgb_y != len_rgb_x:
raise AssertionError('RGB images have different number of planes! '
f'x: {len_rgb_x}, y: {len_rgb_y}')
return math.sqrt(sum([pow(rgb_x[i] - rgb_y[i], 2.0)
for i in range(len_rgb_x)]) / len_rgb_x)
def compute_image_rms_difference_3d(rgb_x, rgb_y):
"""Calculate the RMS difference between 2 RBG images as 3D arrays.
Args:
rgb_x: image array in the form of w * h * channels
rgb_y: image array in the form of w * h * channels
Returns:
rms_diff
"""
shape_rgb_x = numpy.shape(rgb_x)
shape_rgb_y = numpy.shape(rgb_y)
if shape_rgb_y != shape_rgb_x:
raise AssertionError('RGB images have different number of planes! '
f'x: {shape_rgb_x}, y: {shape_rgb_y}')
if len(shape_rgb_x) != 3:
raise AssertionError(f'RGB images dimension {len(shape_rgb_x)} is not 3!')
mean_square_sum = 0.0
for i in range(shape_rgb_x[0]):
for j in range(shape_rgb_x[1]):
for k in range(shape_rgb_x[2]):
mean_square_sum += pow(rgb_x[i][j][k] - rgb_y[i][j][k], 2.0)
return (math.sqrt(mean_square_sum /
(shape_rgb_x[0] * shape_rgb_x[1] * shape_rgb_x[2])))
def compute_image_sad(img_x, img_y):
"""Calculate the sum of absolute differences between 2 images.
Args:
img_x: image array in the form of w * h * channels
img_y: image array in the form of w * h * channels
Returns:
sad
"""
img_x = img_x[:, :, 1:].ravel()
img_y = img_y[:, :, 1:].ravel()
return numpy.sum(numpy.abs(numpy.subtract(img_x, img_y, dtype=float)))
def get_img(buffer):
"""Return a PIL.Image of the capture buffer.
Args:
buffer: data field from the capture result.
Returns:
A PIL.Image
"""
return Image.open(io.BytesIO(buffer))
def jpeg_has_icc_profile(jpeg_img):
"""Checks if a jpeg PIL.Image has an icc profile attached.
Args:
jpeg_img: The PIL.Image.
Returns:
True if an icc profile is present, False otherwise.
"""
return jpeg_img.info.get('icc_profile') is not None
def get_primary_chromaticity(primary):
"""Given an ImageCms primary, returns just the xy chromaticity coordinates.
Args:
primary: The primary from the ImageCms profile.
Returns:
(float, float): The xy chromaticity coordinates of the primary.
"""
((_, _, _), (x, y, _)) = primary
return x, y
def is_jpeg_icc_profile_correct(jpeg_img, color_space, icc_profile_path=None):
"""Compare a jpeg's icc profile to a color space's expected parameters.
Args:
jpeg_img: The PIL.Image.
color_space: 'DISPLAY_P3' or 'SRGB'
icc_profile_path: Optional path to an icc file to be created with the
raw contents.
Returns:
True if the icc profile matches expectations, False otherwise.
"""
icc = jpeg_img.info.get('icc_profile')
f = io.BytesIO(icc)
icc_profile = ImageCms.getOpenProfile(f)
if icc_profile_path is not None:
raw_icc_bytes = f.getvalue()
f = open(icc_profile_path, 'wb')
f.write(raw_icc_bytes)
f.close()
cms_profile = icc_profile.profile
(rx, ry) = get_primary_chromaticity(cms_profile.red_primary)
(gx, gy) = get_primary_chromaticity(cms_profile.green_primary)
(bx, by) = get_primary_chromaticity(cms_profile.blue_primary)
if color_space == 'DISPLAY_P3':
# Expected primaries based on Apple's Display P3 primaries
expected_rx = EXPECTED_RX_P3
expected_ry = EXPECTED_RY_P3
expected_gx = EXPECTED_GX_P3
expected_gy = EXPECTED_GY_P3
expected_bx = EXPECTED_BX_P3
expected_by = EXPECTED_BY_P3
elif color_space == 'SRGB':
# Expected primaries based on Pixel sRGB profile
expected_rx = EXPECTED_RX_SRGB
expected_ry = EXPECTED_RY_SRGB
expected_gx = EXPECTED_GX_SRGB
expected_gy = EXPECTED_GY_SRGB
expected_bx = EXPECTED_BX_SRGB
expected_by = EXPECTED_BY_SRGB
else:
# Unsupported color space for comparison
return False
cmp_values = [
[rx, expected_rx],
[ry, expected_ry],
[gx, expected_gx],
[gy, expected_gy],
[bx, expected_bx],
[by, expected_by]
]
for (actual, expected) in cmp_values:
if not math.isclose(actual, expected, abs_tol=0.001):
# Values significantly differ
return False
return True
def area_of_triangle(x1, y1, x2, y2, x3, y3):
"""Calculates the area of a triangle formed by three points.
Args:
x1 (float): The x-coordinate of the first point.
y1 (float): The y-coordinate of the first point.
x2 (float): The x-coordinate of the second point.
y2 (float): The y-coordinate of the second point.
x3 (float): The x-coordinate of the third point.
y3 (float): The y-coordinate of the third point.
Returns:
float: The area of the triangle.
"""
area = abs((x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2)) / 2.0)
return area
def point_in_triangle(x1, y1, x2, y2, x3, y3, xp, yp, abs_tol):
"""Checks if the point (xp, yp) is inside the triangle.
Args:
x1 (float): The x-coordinate of the first point.
y1 (float): The y-coordinate of the first point.
x2 (float): The x-coordinate of the second point.
y2 (float): The y-coordinate of the second point.
x3 (float): The x-coordinate of the third point.
y3 (float): The y-coordinate of the third point.
xp (float): The x-coordinate of the point to check.
yp (float): The y-coordinate of the point to check.
abs_tol (float): Absolute tolerance amount.
Returns:
bool: True if the point is inside the triangle, False otherwise.
"""
a = area_of_triangle(x1, y1, x2, y2, x3, y3)
a1 = area_of_triangle(xp, yp, x2, y2, x3, y3)
a2 = area_of_triangle(x1, y1, xp, yp, x3, y3)
a3 = area_of_triangle(x1, y1, x2, y2, xp, yp)
return math.isclose(a, (a1 + a2 + a3), abs_tol=abs_tol)
def p3_img_has_wide_gamut(wide_img):
"""Check if a DISPLAY_P3 image contains wide gamut pixels.
Given a DISPLAY_P3 image that should have a wider gamut than SRGB, checks all
pixel values to see if any reside outside the SRGB gamut.
Args:
wide_img: The PIL.Image in the DISPLAY_P3 color space.
Returns:
True if the gamut of wide_img is greater than that of SRGB.
False otherwise.
"""
# Import in this function because this is the only function that uses this
# library in UDC, and the test that calls into this will be skipped on the
# vast majority of devices. In future versions, this is imported at the top.
import colour
w = wide_img.size[0]
h = wide_img.size[1]
wide_arr = numpy.array(wide_img)
img_arr = colour.RGB_to_XYZ(
wide_arr / 255.0,
colour.models.rgb.datasets.display_p3.RGB_COLOURSPACE_DISPLAY_P3.whitepoint,
colour.models.rgb.datasets.display_p3.RGB_COLOURSPACE_DISPLAY_P3.whitepoint,
colour.models.rgb.datasets.display_p3.RGB_COLOURSPACE_DISPLAY_P3.matrix_RGB_to_XYZ,
'Bradford', lambda x: colour.eotf(x, 'sRGB'))
xy_arr = colour.XYZ_to_xy(img_arr)
srgb_colorspace = colour.models.RGB_COLOURSPACE_sRGB
srgb_primaries = srgb_colorspace.primaries
for y in range(h):
for x in range(w):
# Check if the pixel chromaticity is inside or outside the SRGB gamut.
# This check is not guaranteed not to emit false positives / negatives,
# however the probability of either on an arbitrary DISPLAY_P3 camera
# capture is exceedingly unlikely.
if not point_in_triangle(*srgb_primaries.reshape(6),
xy_arr[y][x][0], xy_arr[y][x][1],
COLORSPACE_TRIANGLE_AREA_TOL):
return True
return False