1122 lines
36 KiB
Python
1122 lines
36 KiB
Python
# Copyright 2013 The Android Open Source Project
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Image processing utility functions."""
|
|
|
|
|
|
import copy
|
|
import io
|
|
import logging
|
|
import math
|
|
import os
|
|
import sys
|
|
|
|
import error_util
|
|
import numpy
|
|
from PIL import Image
|
|
from PIL import ImageCms
|
|
|
|
import capture_request_utils
|
|
|
|
|
|
# The matrix is from JFIF spec
|
|
DEFAULT_YUV_TO_RGB_CCM = numpy.matrix([[1.000, 0.000, 1.402],
|
|
[1.000, -0.344, -0.714],
|
|
[1.000, 1.772, 0.000]])
|
|
|
|
DEFAULT_YUV_OFFSETS = numpy.array([0, 128, 128])
|
|
MAX_LUT_SIZE = 65536
|
|
DEFAULT_GAMMA_LUT = numpy.array([
|
|
math.floor((MAX_LUT_SIZE-1) * math.pow(i/(MAX_LUT_SIZE-1), 1/2.2) + 0.5)
|
|
for i in range(MAX_LUT_SIZE)])
|
|
NUM_TRIES = 2
|
|
NUM_FRAMES = 4
|
|
TEST_IMG_DIR = os.path.join(os.environ['CAMERA_ITS_TOP'], 'test_images')
|
|
|
|
# Expected adapted primaries in ICC profile per color space
|
|
EXPECTED_RX_P3 = 0.682
|
|
EXPECTED_RY_P3 = 0.319
|
|
EXPECTED_GX_P3 = 0.285
|
|
EXPECTED_GY_P3 = 0.675
|
|
EXPECTED_BX_P3 = 0.156
|
|
EXPECTED_BY_P3 = 0.066
|
|
|
|
EXPECTED_RX_SRGB = 0.648
|
|
EXPECTED_RY_SRGB = 0.331
|
|
EXPECTED_GX_SRGB = 0.321
|
|
EXPECTED_GY_SRGB = 0.598
|
|
EXPECTED_BX_SRGB = 0.156
|
|
EXPECTED_BY_SRGB = 0.066
|
|
|
|
# Chosen empirically - tolerance for the point in triangle test for colorspace
|
|
# chromaticities
|
|
COLORSPACE_TRIANGLE_AREA_TOL = 0.00028
|
|
|
|
|
|
def convert_image_to_uint8(image):
|
|
image *= 255
|
|
return image.astype(numpy.uint8)
|
|
|
|
|
|
def assert_props_is_not_none(props):
|
|
if not props:
|
|
raise AssertionError('props is None')
|
|
|
|
|
|
def convert_capture_to_rgb_image(cap,
|
|
props=None,
|
|
apply_ccm_raw_to_rgb=True):
|
|
"""Convert a captured image object to a RGB image.
|
|
|
|
Args:
|
|
cap: A capture object as returned by its_session_utils.do_capture.
|
|
props: (Optional) camera properties object (of static values);
|
|
required for processing raw images.
|
|
apply_ccm_raw_to_rgb: (Optional) boolean to apply color correction matrix.
|
|
|
|
Returns:
|
|
RGB float-3 image array, with pixel values in [0.0, 1.0].
|
|
"""
|
|
w = cap['width']
|
|
h = cap['height']
|
|
if cap['format'] == 'raw10':
|
|
assert_props_is_not_none(props)
|
|
cap = unpack_raw10_capture(cap)
|
|
|
|
if cap['format'] == 'raw12':
|
|
assert_props_is_not_none(props)
|
|
cap = unpack_raw12_capture(cap)
|
|
|
|
if cap['format'] == 'yuv':
|
|
y = cap['data'][0: w * h]
|
|
u = cap['data'][w * h: w * h * 5//4]
|
|
v = cap['data'][w * h * 5//4: w * h * 6//4]
|
|
return convert_yuv420_planar_to_rgb_image(y, u, v, w, h)
|
|
elif cap['format'] == 'jpeg' or cap['format'] == 'jpeg_r':
|
|
return decompress_jpeg_to_rgb_image(cap['data'])
|
|
elif cap['format'] == 'raw' or cap['format'] == 'rawStats':
|
|
assert_props_is_not_none(props)
|
|
r, gr, gb, b = convert_capture_to_planes(cap, props)
|
|
return convert_raw_to_rgb_image(
|
|
r, gr, gb, b, props, cap['metadata'], apply_ccm_raw_to_rgb)
|
|
elif cap['format'] == 'y8':
|
|
y = cap['data'][0: w * h]
|
|
return convert_y8_to_rgb_image(y, w, h)
|
|
else:
|
|
raise error_util.CameraItsError(f"Invalid format {cap['format']}")
|
|
|
|
|
|
def unpack_raw10_capture(cap):
|
|
"""Unpack a raw-10 capture to a raw-16 capture.
|
|
|
|
Args:
|
|
cap: A raw-10 capture object.
|
|
|
|
Returns:
|
|
New capture object with raw-16 data.
|
|
"""
|
|
# Data is packed as 4x10b pixels in 5 bytes, with the first 4 bytes holding
|
|
# the MSBs of the pixels, and the 5th byte holding 4x2b LSBs.
|
|
w, h = cap['width'], cap['height']
|
|
if w % 4 != 0:
|
|
raise error_util.CameraItsError('Invalid raw-10 buffer width')
|
|
cap = copy.deepcopy(cap)
|
|
cap['data'] = unpack_raw10_image(cap['data'].reshape(h, w * 5 // 4))
|
|
cap['format'] = 'raw'
|
|
return cap
|
|
|
|
|
|
def unpack_raw10_image(img):
|
|
"""Unpack a raw-10 image to a raw-16 image.
|
|
|
|
Output image will have the 10 LSBs filled in each 16b word, and the 6 MSBs
|
|
will be set to zero.
|
|
|
|
Args:
|
|
img: A raw-10 image, as a uint8 numpy array.
|
|
|
|
Returns:
|
|
Image as a uint16 numpy array, with all row padding stripped.
|
|
"""
|
|
if img.shape[1] % 5 != 0:
|
|
raise error_util.CameraItsError('Invalid raw-10 buffer width')
|
|
w = img.shape[1] * 4 // 5
|
|
h = img.shape[0]
|
|
# Cut out the 4x8b MSBs and shift to bits [9:2] in 16b words.
|
|
msbs = numpy.delete(img, numpy.s_[4::5], 1)
|
|
msbs = msbs.astype(numpy.uint16)
|
|
msbs = numpy.left_shift(msbs, 2)
|
|
msbs = msbs.reshape(h, w)
|
|
# Cut out the 4x2b LSBs and put each in bits [1:0] of their own 8b words.
|
|
lsbs = img[::, 4::5].reshape(h, w // 4)
|
|
lsbs = numpy.right_shift(
|
|
numpy.packbits(numpy.unpackbits(lsbs).reshape((h, w // 4, 4, 2)), 3), 6)
|
|
# Pair the LSB bits group to 0th pixel instead of 3rd pixel
|
|
lsbs = lsbs.reshape(h, w // 4, 4)[:, :, ::-1]
|
|
lsbs = lsbs.reshape(h, w)
|
|
# Fuse the MSBs and LSBs back together
|
|
img16 = numpy.bitwise_or(msbs, lsbs).reshape(h, w)
|
|
return img16
|
|
|
|
|
|
def unpack_raw12_capture(cap):
|
|
"""Unpack a raw-12 capture to a raw-16 capture.
|
|
|
|
Args:
|
|
cap: A raw-12 capture object.
|
|
|
|
Returns:
|
|
New capture object with raw-16 data.
|
|
"""
|
|
# Data is packed as 4x10b pixels in 5 bytes, with the first 4 bytes holding
|
|
# the MSBs of the pixels, and the 5th byte holding 4x2b LSBs.
|
|
w, h = cap['width'], cap['height']
|
|
if w % 2 != 0:
|
|
raise error_util.CameraItsError('Invalid raw-12 buffer width')
|
|
cap = copy.deepcopy(cap)
|
|
cap['data'] = unpack_raw12_image(cap['data'].reshape(h, w * 3 // 2))
|
|
cap['format'] = 'raw'
|
|
return cap
|
|
|
|
|
|
def unpack_raw12_image(img):
|
|
"""Unpack a raw-12 image to a raw-16 image.
|
|
|
|
Output image will have the 12 LSBs filled in each 16b word, and the 4 MSBs
|
|
will be set to zero.
|
|
|
|
Args:
|
|
img: A raw-12 image, as a uint8 numpy array.
|
|
|
|
Returns:
|
|
Image as a uint16 numpy array, with all row padding stripped.
|
|
"""
|
|
if img.shape[1] % 3 != 0:
|
|
raise error_util.CameraItsError('Invalid raw-12 buffer width')
|
|
w = img.shape[1] * 2 // 3
|
|
h = img.shape[0]
|
|
# Cut out the 2x8b MSBs and shift to bits [11:4] in 16b words.
|
|
msbs = numpy.delete(img, numpy.s_[2::3], 1)
|
|
msbs = msbs.astype(numpy.uint16)
|
|
msbs = numpy.left_shift(msbs, 4)
|
|
msbs = msbs.reshape(h, w)
|
|
# Cut out the 2x4b LSBs and put each in bits [3:0] of their own 8b words.
|
|
lsbs = img[::, 2::3].reshape(h, w // 2)
|
|
lsbs = numpy.right_shift(
|
|
numpy.packbits(numpy.unpackbits(lsbs).reshape((h, w // 2, 2, 4)), 3), 4)
|
|
# Pair the LSB bits group to pixel 0 instead of pixel 1
|
|
lsbs = lsbs.reshape(h, w // 2, 2)[:, :, ::-1]
|
|
lsbs = lsbs.reshape(h, w)
|
|
# Fuse the MSBs and LSBs back together
|
|
img16 = numpy.bitwise_or(msbs, lsbs).reshape(h, w)
|
|
return img16
|
|
|
|
|
|
def convert_yuv420_planar_to_rgb_image(y_plane, u_plane, v_plane,
|
|
w, h,
|
|
ccm_yuv_to_rgb=DEFAULT_YUV_TO_RGB_CCM,
|
|
yuv_off=DEFAULT_YUV_OFFSETS):
|
|
"""Convert a YUV420 8-bit planar image to an RGB image.
|
|
|
|
Args:
|
|
y_plane: The packed 8-bit Y plane.
|
|
u_plane: The packed 8-bit U plane.
|
|
v_plane: The packed 8-bit V plane.
|
|
w: The width of the image.
|
|
h: The height of the image.
|
|
ccm_yuv_to_rgb: (Optional) the 3x3 CCM to convert from YUV to RGB.
|
|
yuv_off: (Optional) offsets to subtract from each of Y,U,V values.
|
|
|
|
Returns:
|
|
RGB float-3 image array, with pixel values in [0.0, 1.0].
|
|
"""
|
|
y = numpy.subtract(y_plane, yuv_off[0])
|
|
u = numpy.subtract(u_plane, yuv_off[1]).view(numpy.int8)
|
|
v = numpy.subtract(v_plane, yuv_off[2]).view(numpy.int8)
|
|
u = u.reshape(h // 2, w // 2).repeat(2, axis=1).repeat(2, axis=0)
|
|
v = v.reshape(h // 2, w // 2).repeat(2, axis=1).repeat(2, axis=0)
|
|
yuv = numpy.dstack([y, u.reshape(w * h), v.reshape(w * h)])
|
|
flt = numpy.empty([h, w, 3], dtype=numpy.float32)
|
|
flt.reshape(w * h * 3)[:] = yuv.reshape(h * w * 3)[:]
|
|
flt = numpy.dot(flt.reshape(w * h, 3), ccm_yuv_to_rgb.T).clip(0, 255)
|
|
rgb = numpy.empty([h, w, 3], dtype=numpy.uint8)
|
|
rgb.reshape(w * h * 3)[:] = flt.reshape(w * h * 3)[:]
|
|
return rgb.astype(numpy.float32) / 255.0
|
|
|
|
|
|
def decompress_jpeg_to_rgb_image(jpeg_buffer):
|
|
"""Decompress a JPEG-compressed image, returning as an RGB image.
|
|
|
|
Args:
|
|
jpeg_buffer: The JPEG stream.
|
|
|
|
Returns:
|
|
A numpy array for the RGB image, with pixels in [0,1].
|
|
"""
|
|
img = Image.open(io.BytesIO(jpeg_buffer))
|
|
w = img.size[0]
|
|
h = img.size[1]
|
|
return numpy.array(img).reshape((h, w, 3)) / 255.0
|
|
|
|
|
|
def decompress_jpeg_to_yuv_image(jpeg_buffer):
|
|
"""Decompress a JPEG-compressed image, returning as a YUV image.
|
|
|
|
Args:
|
|
jpeg_buffer: The JPEG stream.
|
|
|
|
Returns:
|
|
A numpy array for the YUV image, with pixels in [0,1].
|
|
"""
|
|
img = Image.open(io.BytesIO(jpeg_buffer))
|
|
img = img.convert('YCbCr')
|
|
w = img.size[0]
|
|
h = img.size[1]
|
|
return numpy.array(img).reshape((h, w, 3)) / 255.0
|
|
|
|
|
|
def extract_luma_from_patch(cap, patch_x, patch_y, patch_w, patch_h):
|
|
"""Extract luma from capture."""
|
|
y, _, _ = convert_capture_to_planes(cap)
|
|
patch = get_image_patch(y, patch_x, patch_y, patch_w, patch_h)
|
|
luma = compute_image_means(patch)[0]
|
|
return luma
|
|
|
|
|
|
def convert_image_to_numpy_array(image_path):
|
|
"""Converts image at image_path to numpy array and returns the array.
|
|
|
|
Args:
|
|
image_path: file path
|
|
Returns:
|
|
numpy array
|
|
"""
|
|
if not os.path.exists(image_path):
|
|
raise AssertionError(f'{image_path} does not exist.')
|
|
image = Image.open(image_path)
|
|
return numpy.array(image)
|
|
|
|
|
|
def convert_capture_to_planes(cap, props=None):
|
|
"""Convert a captured image object to separate image planes.
|
|
|
|
Decompose an image into multiple images, corresponding to different planes.
|
|
|
|
For YUV420 captures ("yuv"):
|
|
Returns Y,U,V planes, where the Y plane is full-res and the U,V planes
|
|
are each 1/2 x 1/2 of the full res.
|
|
|
|
For Bayer captures ("raw", "raw10", "raw12", or "rawStats"):
|
|
Returns planes in the order R,Gr,Gb,B, regardless of the Bayer pattern
|
|
layout. For full-res raw images ("raw", "raw10", "raw12"), each plane
|
|
is 1/2 x 1/2 of the full res. For "rawStats" images, the mean image
|
|
is returned.
|
|
|
|
For JPEG captures ("jpeg"):
|
|
Returns R,G,B full-res planes.
|
|
|
|
Args:
|
|
cap: A capture object as returned by its_session_utils.do_capture.
|
|
props: (Optional) camera properties object (of static values);
|
|
required for processing raw images.
|
|
|
|
Returns:
|
|
A tuple of float numpy arrays (one per plane), consisting of pixel values
|
|
in the range [0.0, 1.0].
|
|
"""
|
|
w = cap['width']
|
|
h = cap['height']
|
|
if cap['format'] == 'raw10':
|
|
assert_props_is_not_none(props)
|
|
cap = unpack_raw10_capture(cap)
|
|
if cap['format'] == 'raw12':
|
|
assert_props_is_not_none(props)
|
|
cap = unpack_raw12_capture(cap)
|
|
if cap['format'] == 'yuv':
|
|
y = cap['data'][0:w * h]
|
|
u = cap['data'][w * h:w * h * 5 // 4]
|
|
v = cap['data'][w * h * 5 // 4:w * h * 6 // 4]
|
|
return ((y.astype(numpy.float32) / 255.0).reshape(h, w, 1),
|
|
(u.astype(numpy.float32) / 255.0).reshape(h // 2, w // 2, 1),
|
|
(v.astype(numpy.float32) / 255.0).reshape(h // 2, w // 2, 1))
|
|
elif cap['format'] == 'jpeg':
|
|
rgb = decompress_jpeg_to_rgb_image(cap['data']).reshape(w * h * 3)
|
|
return (rgb[::3].reshape(h, w, 1), rgb[1::3].reshape(h, w, 1),
|
|
rgb[2::3].reshape(h, w, 1))
|
|
elif cap['format'] == 'raw':
|
|
assert_props_is_not_none(props)
|
|
white_level = float(props['android.sensor.info.whiteLevel'])
|
|
img = numpy.ndarray(
|
|
shape=(h * w,), dtype='<u2', buffer=cap['data'][0:w * h * 2])
|
|
img = img.astype(numpy.float32).reshape(h, w) / white_level
|
|
# Crop the raw image to the active array region.
|
|
if (props.get('android.sensor.info.preCorrectionActiveArraySize') is
|
|
not None and
|
|
props.get('android.sensor.info.pixelArraySize') is not None):
|
|
# Note that the Rect class is defined such that the left,top values
|
|
# are "inside" while the right,bottom values are "outside"; that is,
|
|
# it's inclusive of the top,left sides only. So, the width is
|
|
# computed as right-left, rather than right-left+1, etc.
|
|
wfull = props['android.sensor.info.pixelArraySize']['width']
|
|
hfull = props['android.sensor.info.pixelArraySize']['height']
|
|
xcrop = props['android.sensor.info.preCorrectionActiveArraySize']['left']
|
|
ycrop = props['android.sensor.info.preCorrectionActiveArraySize']['top']
|
|
wcrop = props['android.sensor.info.preCorrectionActiveArraySize'][
|
|
'right'] - xcrop
|
|
hcrop = props['android.sensor.info.preCorrectionActiveArraySize'][
|
|
'bottom'] - ycrop
|
|
if not wfull >= wcrop >= 0:
|
|
raise AssertionError(f'wcrop: {wcrop} not in wfull: {wfull}')
|
|
if not hfull >= hcrop >= 0:
|
|
raise AssertionError(f'hcrop: {hcrop} not in hfull: {hfull}')
|
|
if not wfull - wcrop >= xcrop >= 0:
|
|
raise AssertionError(f'xcrop: {xcrop} not in wfull-crop: {wfull-wcrop}')
|
|
if not hfull - hcrop >= ycrop >= 0:
|
|
raise AssertionError(f'ycrop: {ycrop} not in hfull-crop: {hfull-hcrop}')
|
|
if w == wfull and h == hfull:
|
|
# Crop needed; extract the center region.
|
|
img = img[ycrop:ycrop + hcrop, xcrop:xcrop + wcrop]
|
|
w = wcrop
|
|
h = hcrop
|
|
elif w == wcrop and h == hcrop:
|
|
logging.debug('Image is already cropped.No cropping needed.')
|
|
# pylint: disable=pointless-statement
|
|
None
|
|
else:
|
|
raise error_util.CameraItsError('Invalid image size metadata')
|
|
# Separate the image planes.
|
|
imgs = [
|
|
img[::2].reshape(w * h // 2)[::2].reshape(h // 2, w // 2, 1),
|
|
img[::2].reshape(w * h // 2)[1::2].reshape(h // 2, w // 2, 1),
|
|
img[1::2].reshape(w * h // 2)[::2].reshape(h // 2, w // 2, 1),
|
|
img[1::2].reshape(w * h // 2)[1::2].reshape(h // 2, w // 2, 1)
|
|
]
|
|
idxs = get_canonical_cfa_order(props)
|
|
return [imgs[i] for i in idxs]
|
|
elif cap['format'] == 'rawStats':
|
|
assert_props_is_not_none(props)
|
|
white_level = float(props['android.sensor.info.whiteLevel'])
|
|
# pylint: disable=unused-variable
|
|
mean_image, var_image = unpack_rawstats_capture(cap)
|
|
idxs = get_canonical_cfa_order(props)
|
|
return [mean_image[:, :, i] / white_level for i in idxs]
|
|
else:
|
|
raise error_util.CameraItsError(f"Invalid format {cap['format']}")
|
|
|
|
|
|
def downscale_image(img, f):
|
|
"""Shrink an image by a given integer factor.
|
|
|
|
This function computes output pixel values by averaging over rectangular
|
|
regions of the input image; it doesn't skip or sample pixels, and all input
|
|
image pixels are evenly weighted.
|
|
|
|
If the downscaling factor doesn't cleanly divide the width and/or height,
|
|
then the remaining pixels on the right or bottom edge are discarded prior
|
|
to the downscaling.
|
|
|
|
Args:
|
|
img: The input image as an ndarray.
|
|
f: The downscaling factor, which should be an integer.
|
|
|
|
Returns:
|
|
The new (downscaled) image, as an ndarray.
|
|
"""
|
|
h, w, chans = img.shape
|
|
f = int(f)
|
|
assert f >= 1
|
|
h = (h//f)*f
|
|
w = (w//f)*f
|
|
img = img[0:h:, 0:w:, ::]
|
|
chs = []
|
|
for i in range(chans):
|
|
ch = img.reshape(h*w*chans)[i::chans].reshape(h, w)
|
|
ch = ch.reshape(h, w//f, f).mean(2).reshape(h, w//f)
|
|
ch = ch.T.reshape(w//f, h//f, f).mean(2).T.reshape(h//f, w//f)
|
|
chs.append(ch.reshape(h*w//(f*f)))
|
|
img = numpy.vstack(chs).T.reshape(h//f, w//f, chans)
|
|
return img
|
|
|
|
|
|
def convert_raw_to_rgb_image(r_plane, gr_plane, gb_plane, b_plane, props,
|
|
cap_res, apply_ccm_raw_to_rgb=True):
|
|
"""Convert a Bayer raw-16 image to an RGB image.
|
|
|
|
Includes some extremely rudimentary demosaicking and color processing
|
|
operations; the output of this function shouldn't be used for any image
|
|
quality analysis.
|
|
|
|
Args:
|
|
r_plane:
|
|
gr_plane:
|
|
gb_plane:
|
|
b_plane: Numpy arrays for each color plane
|
|
in the Bayer image, with pixels in the [0.0, 1.0] range.
|
|
props: Camera properties object.
|
|
cap_res: Capture result (metadata) object.
|
|
apply_ccm_raw_to_rgb: (Optional) boolean to apply color correction matrix.
|
|
|
|
Returns:
|
|
RGB float-3 image array, with pixel values in [0.0, 1.0]
|
|
"""
|
|
# Values required for the RAW to RGB conversion.
|
|
assert_props_is_not_none(props)
|
|
white_level = float(props['android.sensor.info.whiteLevel'])
|
|
black_levels = props['android.sensor.blackLevelPattern']
|
|
gains = cap_res['android.colorCorrection.gains']
|
|
ccm = cap_res['android.colorCorrection.transform']
|
|
|
|
# Reorder black levels and gains to R,Gr,Gb,B, to match the order
|
|
# of the planes.
|
|
black_levels = [get_black_level(i, props, cap_res) for i in range(4)]
|
|
gains = get_gains_in_canonical_order(props, gains)
|
|
|
|
# Convert CCM from rational to float, as numpy arrays.
|
|
ccm = numpy.array(capture_request_utils.rational_to_float(ccm)).reshape(3, 3)
|
|
|
|
# Need to scale the image back to the full [0,1] range after subtracting
|
|
# the black level from each pixel.
|
|
scale = white_level / (white_level - max(black_levels))
|
|
|
|
# Three-channel black levels, normalized to [0,1] by white_level.
|
|
black_levels = numpy.array(
|
|
[b / white_level for b in [black_levels[i] for i in [0, 1, 3]]])
|
|
|
|
# Three-channel gains.
|
|
gains = numpy.array([gains[i] for i in [0, 1, 3]])
|
|
|
|
h, w = r_plane.shape[:2]
|
|
img = numpy.dstack([r_plane, (gr_plane + gb_plane) / 2.0, b_plane])
|
|
img = (((img.reshape(h, w, 3) - black_levels) * scale) * gains).clip(0.0, 1.0)
|
|
if apply_ccm_raw_to_rgb:
|
|
img = numpy.dot(
|
|
img.reshape(w * h, 3), ccm.T).reshape((h, w, 3)).clip(0.0, 1.0)
|
|
return img
|
|
|
|
|
|
def convert_y8_to_rgb_image(y_plane, w, h):
|
|
"""Convert a Y 8-bit image to an RGB image.
|
|
|
|
Args:
|
|
y_plane: The packed 8-bit Y plane.
|
|
w: The width of the image.
|
|
h: The height of the image.
|
|
|
|
Returns:
|
|
RGB float-3 image array, with pixel values in [0.0, 1.0].
|
|
"""
|
|
y3 = numpy.dstack([y_plane, y_plane, y_plane])
|
|
rgb = numpy.empty([h, w, 3], dtype=numpy.uint8)
|
|
rgb.reshape(w * h * 3)[:] = y3.reshape(w * h * 3)[:]
|
|
return rgb.astype(numpy.float32) / 255.0
|
|
|
|
|
|
def write_image(img, fname, apply_gamma=False, is_yuv=False):
|
|
"""Save a float-3 numpy array image to a file.
|
|
|
|
Supported formats: PNG, JPEG, and others; see PIL docs for more.
|
|
|
|
Image can be 3-channel, which is interpreted as RGB or YUV, or can be
|
|
1-channel, which is greyscale.
|
|
|
|
Can optionally specify that the image should be gamma-encoded prior to
|
|
writing it out; this should be done if the image contains linear pixel
|
|
values, to make the image look "normal".
|
|
|
|
Args:
|
|
img: Numpy image array data.
|
|
fname: Path of file to save to; the extension specifies the format.
|
|
apply_gamma: (Optional) apply gamma to the image prior to writing it.
|
|
is_yuv: Whether the image is in YUV format.
|
|
"""
|
|
if apply_gamma:
|
|
img = apply_lut_to_image(img, DEFAULT_GAMMA_LUT)
|
|
(h, w, chans) = img.shape
|
|
if chans == 3:
|
|
if not is_yuv:
|
|
Image.fromarray((img * 255.0).astype(numpy.uint8), 'RGB').save(fname)
|
|
else:
|
|
Image.fromarray((img * 255.0).astype(numpy.uint8), 'YCbCr').save(fname)
|
|
elif chans == 1:
|
|
img3 = (img * 255.0).astype(numpy.uint8).repeat(3).reshape(h, w, 3)
|
|
Image.fromarray(img3, 'RGB').save(fname)
|
|
else:
|
|
raise error_util.CameraItsError('Unsupported image type')
|
|
|
|
|
|
def read_image(fname):
|
|
"""Read image function to match write_image() above."""
|
|
return Image.open(fname)
|
|
|
|
|
|
def apply_lut_to_image(img, lut):
|
|
"""Applies a LUT to every pixel in a float image array.
|
|
|
|
Internally converts to a 16b integer image, since the LUT can work with up
|
|
to 16b->16b mappings (i.e. values in the range [0,65535]). The lut can also
|
|
have fewer than 65536 entries, however it must be sized as a power of 2
|
|
(and for smaller luts, the scale must match the bitdepth).
|
|
|
|
For a 16b lut of 65536 entries, the operation performed is:
|
|
|
|
lut[r * 65535] / 65535 -> r'
|
|
lut[g * 65535] / 65535 -> g'
|
|
lut[b * 65535] / 65535 -> b'
|
|
|
|
For a 10b lut of 1024 entries, the operation becomes:
|
|
|
|
lut[r * 1023] / 1023 -> r'
|
|
lut[g * 1023] / 1023 -> g'
|
|
lut[b * 1023] / 1023 -> b'
|
|
|
|
Args:
|
|
img: Numpy float image array, with pixel values in [0,1].
|
|
lut: Numpy table encoding a LUT, mapping 16b integer values.
|
|
|
|
Returns:
|
|
Float image array after applying LUT to each pixel.
|
|
"""
|
|
n = len(lut)
|
|
if n <= 0 or n > MAX_LUT_SIZE or (n & (n - 1)) != 0:
|
|
raise error_util.CameraItsError(f'Invalid arg LUT size: {n}')
|
|
m = float(n - 1)
|
|
return (lut[(img * m).astype(numpy.uint16)] / m).astype(numpy.float32)
|
|
|
|
|
|
def get_gains_in_canonical_order(props, gains):
|
|
"""Reorders the gains tuple to the canonical R,Gr,Gb,B order.
|
|
|
|
Args:
|
|
props: Camera properties object.
|
|
gains: List of 4 values, in R,G_even,G_odd,B order.
|
|
|
|
Returns:
|
|
List of gains values, in R,Gr,Gb,B order.
|
|
"""
|
|
cfa_pat = props['android.sensor.info.colorFilterArrangement']
|
|
if cfa_pat in [0, 1]:
|
|
# RGGB or GRBG, so G_even is Gr
|
|
return gains
|
|
elif cfa_pat in [2, 3]:
|
|
# GBRG or BGGR, so G_even is Gb
|
|
return [gains[0], gains[2], gains[1], gains[3]]
|
|
else:
|
|
raise error_util.CameraItsError('Not supported')
|
|
|
|
|
|
def get_black_level(chan, props, cap_res=None):
|
|
"""Return the black level to use for a given capture.
|
|
|
|
Uses a dynamic value from the capture result if available, else falls back
|
|
to the static global value in the camera characteristics.
|
|
|
|
Args:
|
|
chan: The channel index, in canonical order (R, Gr, Gb, B).
|
|
props: The camera properties object.
|
|
cap_res: A capture result object.
|
|
|
|
Returns:
|
|
The black level value for the specified channel.
|
|
"""
|
|
if (cap_res is not None and
|
|
'android.sensor.dynamicBlackLevel' in cap_res and
|
|
cap_res['android.sensor.dynamicBlackLevel'] is not None):
|
|
black_levels = cap_res['android.sensor.dynamicBlackLevel']
|
|
else:
|
|
black_levels = props['android.sensor.blackLevelPattern']
|
|
idxs = get_canonical_cfa_order(props)
|
|
ordered_black_levels = [black_levels[i] for i in idxs]
|
|
return ordered_black_levels[chan]
|
|
|
|
|
|
def get_canonical_cfa_order(props):
|
|
"""Returns a mapping to the standard order R,Gr,Gb,B.
|
|
|
|
Returns a mapping from the Bayer 2x2 top-left grid in the CFA to the standard
|
|
order R,Gr,Gb,B.
|
|
|
|
Args:
|
|
props: Camera properties object.
|
|
|
|
Returns:
|
|
List of 4 integers, corresponding to the positions in the 2x2 top-
|
|
left Bayer grid of R,Gr,Gb,B, where the 2x2 grid is labeled as
|
|
0,1,2,3 in row major order.
|
|
"""
|
|
# Note that raw streams aren't croppable, so the cropRegion doesn't need
|
|
# to be considered when determining the top-left pixel color.
|
|
cfa_pat = props['android.sensor.info.colorFilterArrangement']
|
|
if cfa_pat == 0:
|
|
# RGGB
|
|
return [0, 1, 2, 3]
|
|
elif cfa_pat == 1:
|
|
# GRBG
|
|
return [1, 0, 3, 2]
|
|
elif cfa_pat == 2:
|
|
# GBRG
|
|
return [2, 3, 0, 1]
|
|
elif cfa_pat == 3:
|
|
# BGGR
|
|
return [3, 2, 1, 0]
|
|
else:
|
|
raise error_util.CameraItsError('Not supported')
|
|
|
|
|
|
def unpack_rawstats_capture(cap):
|
|
"""Unpack a rawStats capture to the mean and variance images.
|
|
|
|
Args:
|
|
cap: A capture object as returned by its_session_utils.do_capture.
|
|
|
|
Returns:
|
|
Tuple (mean_image var_image) of float-4 images, with non-normalized
|
|
pixel values computed from the RAW16 images on the device
|
|
"""
|
|
if cap['format'] != 'rawStats':
|
|
raise AssertionError(f"Unpack fmt != rawStats: {cap['format']}")
|
|
w = cap['width']
|
|
h = cap['height']
|
|
img = numpy.ndarray(shape=(2 * h * w * 4,), dtype='<f', buffer=cap['data'])
|
|
analysis_image = img.reshape((2, h, w, 4))
|
|
mean_image = analysis_image[0, :, :, :].reshape(h, w, 4)
|
|
var_image = analysis_image[1, :, :, :].reshape(h, w, 4)
|
|
return mean_image, var_image
|
|
|
|
|
|
def get_image_patch(img, xnorm, ynorm, wnorm, hnorm):
|
|
"""Get a patch (tile) of an image.
|
|
|
|
Args:
|
|
img: Numpy float image array, with pixel values in [0,1].
|
|
xnorm:
|
|
ynorm:
|
|
wnorm:
|
|
hnorm: Normalized (in [0,1]) coords for the tile.
|
|
|
|
Returns:
|
|
Numpy float image array of the patch.
|
|
"""
|
|
hfull = img.shape[0]
|
|
wfull = img.shape[1]
|
|
xtile = int(math.ceil(xnorm * wfull))
|
|
ytile = int(math.ceil(ynorm * hfull))
|
|
wtile = int(math.floor(wnorm * wfull))
|
|
htile = int(math.floor(hnorm * hfull))
|
|
if len(img.shape) == 2:
|
|
return img[ytile:ytile + htile, xtile:xtile + wtile].copy()
|
|
else:
|
|
return img[ytile:ytile + htile, xtile:xtile + wtile, :].copy()
|
|
|
|
|
|
def compute_image_means(img):
|
|
"""Calculate the mean of each color channel in the image.
|
|
|
|
Args:
|
|
img: Numpy float image array, with pixel values in [0,1].
|
|
|
|
Returns:
|
|
A list of mean values, one per color channel in the image.
|
|
"""
|
|
means = []
|
|
chans = img.shape[2]
|
|
for i in range(chans):
|
|
means.append(numpy.mean(img[:, :, i], dtype=numpy.float64))
|
|
return means
|
|
|
|
|
|
def compute_image_variances(img):
|
|
"""Calculate the variance of each color channel in the image.
|
|
|
|
Args:
|
|
img: Numpy float image array, with pixel values in [0,1].
|
|
|
|
Returns:
|
|
A list of variance values, one per color channel in the image.
|
|
"""
|
|
variances = []
|
|
chans = img.shape[2]
|
|
for i in range(chans):
|
|
variances.append(numpy.var(img[:, :, i], dtype=numpy.float64))
|
|
return variances
|
|
|
|
|
|
def compute_image_sharpness(img):
|
|
"""Calculate the sharpness of input image.
|
|
|
|
Args:
|
|
img: numpy float RGB/luma image array, with pixel values in [0,1].
|
|
|
|
Returns:
|
|
Sharpness estimation value based on the average of gradient magnitude.
|
|
Larger value means the image is sharper.
|
|
"""
|
|
chans = img.shape[2]
|
|
if chans != 1 and chans != 3:
|
|
raise AssertionError(f'Not RGB or MONO image! depth: {chans}')
|
|
if chans == 1:
|
|
luma = img[:, :, 0]
|
|
else:
|
|
luma = convert_rgb_to_grayscale(img)
|
|
gy, gx = numpy.gradient(luma)
|
|
return numpy.average(numpy.sqrt(gy*gy + gx*gx))
|
|
|
|
|
|
def compute_image_max_gradients(img):
|
|
"""Calculate the maximum gradient of each color channel in the image.
|
|
|
|
Args:
|
|
img: Numpy float image array, with pixel values in [0,1].
|
|
|
|
Returns:
|
|
A list of gradient max values, one per color channel in the image.
|
|
"""
|
|
grads = []
|
|
chans = img.shape[2]
|
|
for i in range(chans):
|
|
grads.append(numpy.amax(numpy.gradient(img[:, :, i])))
|
|
return grads
|
|
|
|
|
|
def compute_image_snrs(img):
|
|
"""Calculate the SNR (dB) of each color channel in the image.
|
|
|
|
Args:
|
|
img: Numpy float image array, with pixel values in [0,1].
|
|
|
|
Returns:
|
|
A list of SNR values in dB, one per color channel in the image.
|
|
"""
|
|
means = compute_image_means(img)
|
|
variances = compute_image_variances(img)
|
|
std_devs = [math.sqrt(v) for v in variances]
|
|
snrs = [20 * math.log10(m/s) for m, s in zip(means, std_devs)]
|
|
return snrs
|
|
|
|
|
|
def convert_rgb_to_grayscale(img):
|
|
"""Convert and 3-D array RGB image to grayscale image.
|
|
|
|
Args:
|
|
img: numpy float RGB/luma image array, with pixel values in [0,1].
|
|
|
|
Returns:
|
|
2-D grayscale image
|
|
"""
|
|
chans = img.shape[2]
|
|
if chans != 3:
|
|
raise AssertionError(f'Not an RGB image! Depth: {chans}')
|
|
return 0.299*img[:, :, 0] + 0.587*img[:, :, 1] + 0.114*img[:, :, 2]
|
|
|
|
|
|
def normalize_img(img):
|
|
"""Normalize the image values to between 0 and 1.
|
|
|
|
Args:
|
|
img: 2-D numpy array of image values
|
|
Returns:
|
|
Normalized image
|
|
"""
|
|
return (img - numpy.amin(img))/(numpy.amax(img) - numpy.amin(img))
|
|
|
|
|
|
def rotate_img_per_argv(img):
|
|
"""Rotate an image 180 degrees if "rotate" is in argv.
|
|
|
|
Args:
|
|
img: 2-D numpy array of image values
|
|
Returns:
|
|
Rotated image
|
|
"""
|
|
img_out = img
|
|
if 'rotate180' in sys.argv:
|
|
img_out = numpy.fliplr(numpy.flipud(img_out))
|
|
return img_out
|
|
|
|
|
|
def stationary_lens_cap(cam, req, fmt):
|
|
"""Take up to NUM_TRYS caps and save the 1st one with lens stationary.
|
|
|
|
Args:
|
|
cam: open device session
|
|
req: capture request
|
|
fmt: format for capture
|
|
|
|
Returns:
|
|
capture
|
|
"""
|
|
tries = 0
|
|
done = False
|
|
reqs = [req] * NUM_FRAMES
|
|
while not done:
|
|
logging.debug('Waiting for lens to move to correct location.')
|
|
cap = cam.do_capture(reqs, fmt)
|
|
done = (cap[NUM_FRAMES - 1]['metadata']['android.lens.state'] == 0)
|
|
logging.debug('status: %s', done)
|
|
tries += 1
|
|
if tries == NUM_TRIES:
|
|
raise error_util.CameraItsError('Cannot settle lens after %d tries!' %
|
|
tries)
|
|
return cap[NUM_FRAMES - 1]
|
|
|
|
|
|
def compute_image_rms_difference_1d(rgb_x, rgb_y):
|
|
"""Calculate the RMS difference between 2 RBG images as 1D arrays.
|
|
|
|
Args:
|
|
rgb_x: image array
|
|
rgb_y: image array
|
|
|
|
Returns:
|
|
rms_diff
|
|
"""
|
|
len_rgb_x = len(rgb_x)
|
|
len_rgb_y = len(rgb_y)
|
|
if len_rgb_y != len_rgb_x:
|
|
raise AssertionError('RGB images have different number of planes! '
|
|
f'x: {len_rgb_x}, y: {len_rgb_y}')
|
|
return math.sqrt(sum([pow(rgb_x[i] - rgb_y[i], 2.0)
|
|
for i in range(len_rgb_x)]) / len_rgb_x)
|
|
|
|
|
|
def compute_image_rms_difference_3d(rgb_x, rgb_y):
|
|
"""Calculate the RMS difference between 2 RBG images as 3D arrays.
|
|
|
|
Args:
|
|
rgb_x: image array in the form of w * h * channels
|
|
rgb_y: image array in the form of w * h * channels
|
|
|
|
Returns:
|
|
rms_diff
|
|
"""
|
|
shape_rgb_x = numpy.shape(rgb_x)
|
|
shape_rgb_y = numpy.shape(rgb_y)
|
|
if shape_rgb_y != shape_rgb_x:
|
|
raise AssertionError('RGB images have different number of planes! '
|
|
f'x: {shape_rgb_x}, y: {shape_rgb_y}')
|
|
if len(shape_rgb_x) != 3:
|
|
raise AssertionError(f'RGB images dimension {len(shape_rgb_x)} is not 3!')
|
|
|
|
mean_square_sum = 0.0
|
|
for i in range(shape_rgb_x[0]):
|
|
for j in range(shape_rgb_x[1]):
|
|
for k in range(shape_rgb_x[2]):
|
|
mean_square_sum += pow(rgb_x[i][j][k] - rgb_y[i][j][k], 2.0)
|
|
return (math.sqrt(mean_square_sum /
|
|
(shape_rgb_x[0] * shape_rgb_x[1] * shape_rgb_x[2])))
|
|
|
|
|
|
def compute_image_sad(img_x, img_y):
|
|
"""Calculate the sum of absolute differences between 2 images.
|
|
|
|
Args:
|
|
img_x: image array in the form of w * h * channels
|
|
img_y: image array in the form of w * h * channels
|
|
|
|
Returns:
|
|
sad
|
|
"""
|
|
img_x = img_x[:, :, 1:].ravel()
|
|
img_y = img_y[:, :, 1:].ravel()
|
|
return numpy.sum(numpy.abs(numpy.subtract(img_x, img_y, dtype=float)))
|
|
|
|
|
|
def get_img(buffer):
|
|
"""Return a PIL.Image of the capture buffer.
|
|
|
|
Args:
|
|
buffer: data field from the capture result.
|
|
|
|
Returns:
|
|
A PIL.Image
|
|
"""
|
|
return Image.open(io.BytesIO(buffer))
|
|
|
|
|
|
def jpeg_has_icc_profile(jpeg_img):
|
|
"""Checks if a jpeg PIL.Image has an icc profile attached.
|
|
|
|
Args:
|
|
jpeg_img: The PIL.Image.
|
|
|
|
Returns:
|
|
True if an icc profile is present, False otherwise.
|
|
"""
|
|
return jpeg_img.info.get('icc_profile') is not None
|
|
|
|
|
|
def get_primary_chromaticity(primary):
|
|
"""Given an ImageCms primary, returns just the xy chromaticity coordinates.
|
|
|
|
Args:
|
|
primary: The primary from the ImageCms profile.
|
|
|
|
Returns:
|
|
(float, float): The xy chromaticity coordinates of the primary.
|
|
"""
|
|
((_, _, _), (x, y, _)) = primary
|
|
return x, y
|
|
|
|
|
|
def is_jpeg_icc_profile_correct(jpeg_img, color_space, icc_profile_path=None):
|
|
"""Compare a jpeg's icc profile to a color space's expected parameters.
|
|
|
|
Args:
|
|
jpeg_img: The PIL.Image.
|
|
color_space: 'DISPLAY_P3' or 'SRGB'
|
|
icc_profile_path: Optional path to an icc file to be created with the
|
|
raw contents.
|
|
|
|
Returns:
|
|
True if the icc profile matches expectations, False otherwise.
|
|
"""
|
|
icc = jpeg_img.info.get('icc_profile')
|
|
f = io.BytesIO(icc)
|
|
icc_profile = ImageCms.getOpenProfile(f)
|
|
|
|
if icc_profile_path is not None:
|
|
raw_icc_bytes = f.getvalue()
|
|
f = open(icc_profile_path, 'wb')
|
|
f.write(raw_icc_bytes)
|
|
f.close()
|
|
|
|
cms_profile = icc_profile.profile
|
|
(rx, ry) = get_primary_chromaticity(cms_profile.red_primary)
|
|
(gx, gy) = get_primary_chromaticity(cms_profile.green_primary)
|
|
(bx, by) = get_primary_chromaticity(cms_profile.blue_primary)
|
|
|
|
if color_space == 'DISPLAY_P3':
|
|
# Expected primaries based on Apple's Display P3 primaries
|
|
expected_rx = EXPECTED_RX_P3
|
|
expected_ry = EXPECTED_RY_P3
|
|
expected_gx = EXPECTED_GX_P3
|
|
expected_gy = EXPECTED_GY_P3
|
|
expected_bx = EXPECTED_BX_P3
|
|
expected_by = EXPECTED_BY_P3
|
|
elif color_space == 'SRGB':
|
|
# Expected primaries based on Pixel sRGB profile
|
|
expected_rx = EXPECTED_RX_SRGB
|
|
expected_ry = EXPECTED_RY_SRGB
|
|
expected_gx = EXPECTED_GX_SRGB
|
|
expected_gy = EXPECTED_GY_SRGB
|
|
expected_bx = EXPECTED_BX_SRGB
|
|
expected_by = EXPECTED_BY_SRGB
|
|
else:
|
|
# Unsupported color space for comparison
|
|
return False
|
|
|
|
cmp_values = [
|
|
[rx, expected_rx],
|
|
[ry, expected_ry],
|
|
[gx, expected_gx],
|
|
[gy, expected_gy],
|
|
[bx, expected_bx],
|
|
[by, expected_by]
|
|
]
|
|
|
|
for (actual, expected) in cmp_values:
|
|
if not math.isclose(actual, expected, abs_tol=0.001):
|
|
# Values significantly differ
|
|
return False
|
|
|
|
return True
|
|
|
|
|
|
def area_of_triangle(x1, y1, x2, y2, x3, y3):
|
|
"""Calculates the area of a triangle formed by three points.
|
|
|
|
Args:
|
|
x1 (float): The x-coordinate of the first point.
|
|
y1 (float): The y-coordinate of the first point.
|
|
x2 (float): The x-coordinate of the second point.
|
|
y2 (float): The y-coordinate of the second point.
|
|
x3 (float): The x-coordinate of the third point.
|
|
y3 (float): The y-coordinate of the third point.
|
|
|
|
Returns:
|
|
float: The area of the triangle.
|
|
"""
|
|
area = abs((x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2)) / 2.0)
|
|
return area
|
|
|
|
|
|
def point_in_triangle(x1, y1, x2, y2, x3, y3, xp, yp, abs_tol):
|
|
"""Checks if the point (xp, yp) is inside the triangle.
|
|
|
|
Args:
|
|
x1 (float): The x-coordinate of the first point.
|
|
y1 (float): The y-coordinate of the first point.
|
|
x2 (float): The x-coordinate of the second point.
|
|
y2 (float): The y-coordinate of the second point.
|
|
x3 (float): The x-coordinate of the third point.
|
|
y3 (float): The y-coordinate of the third point.
|
|
xp (float): The x-coordinate of the point to check.
|
|
yp (float): The y-coordinate of the point to check.
|
|
abs_tol (float): Absolute tolerance amount.
|
|
|
|
Returns:
|
|
bool: True if the point is inside the triangle, False otherwise.
|
|
"""
|
|
a = area_of_triangle(x1, y1, x2, y2, x3, y3)
|
|
a1 = area_of_triangle(xp, yp, x2, y2, x3, y3)
|
|
a2 = area_of_triangle(x1, y1, xp, yp, x3, y3)
|
|
a3 = area_of_triangle(x1, y1, x2, y2, xp, yp)
|
|
return math.isclose(a, (a1 + a2 + a3), abs_tol=abs_tol)
|
|
|
|
|
|
def p3_img_has_wide_gamut(wide_img):
|
|
"""Check if a DISPLAY_P3 image contains wide gamut pixels.
|
|
|
|
Given a DISPLAY_P3 image that should have a wider gamut than SRGB, checks all
|
|
pixel values to see if any reside outside the SRGB gamut.
|
|
|
|
Args:
|
|
wide_img: The PIL.Image in the DISPLAY_P3 color space.
|
|
|
|
Returns:
|
|
True if the gamut of wide_img is greater than that of SRGB.
|
|
False otherwise.
|
|
"""
|
|
# Import in this function because this is the only function that uses this
|
|
# library in UDC, and the test that calls into this will be skipped on the
|
|
# vast majority of devices. In future versions, this is imported at the top.
|
|
import colour
|
|
|
|
w = wide_img.size[0]
|
|
h = wide_img.size[1]
|
|
wide_arr = numpy.array(wide_img)
|
|
|
|
img_arr = colour.RGB_to_XYZ(
|
|
wide_arr / 255.0,
|
|
colour.models.rgb.datasets.display_p3.RGB_COLOURSPACE_DISPLAY_P3.whitepoint,
|
|
colour.models.rgb.datasets.display_p3.RGB_COLOURSPACE_DISPLAY_P3.whitepoint,
|
|
colour.models.rgb.datasets.display_p3.RGB_COLOURSPACE_DISPLAY_P3.matrix_RGB_to_XYZ,
|
|
'Bradford', lambda x: colour.eotf(x, 'sRGB'))
|
|
|
|
xy_arr = colour.XYZ_to_xy(img_arr)
|
|
|
|
srgb_colorspace = colour.models.RGB_COLOURSPACE_sRGB
|
|
srgb_primaries = srgb_colorspace.primaries
|
|
|
|
for y in range(h):
|
|
for x in range(w):
|
|
# Check if the pixel chromaticity is inside or outside the SRGB gamut.
|
|
# This check is not guaranteed not to emit false positives / negatives,
|
|
# however the probability of either on an arbitrary DISPLAY_P3 camera
|
|
# capture is exceedingly unlikely.
|
|
if not point_in_triangle(*srgb_primaries.reshape(6),
|
|
xy_arr[y][x][0], xy_arr[y][x][1],
|
|
COLORSPACE_TRIANGLE_AREA_TOL):
|
|
return True
|
|
|
|
return False
|