52 lines
1.3 KiB
C
52 lines
1.3 KiB
C
|
|
/*
|
||
|
|
* Single-precision polynomial evaluation function for scalar and vector
|
||
|
|
* atan(x) and atan2(y,x).
|
||
|
|
*
|
||
|
|
* Copyright (c) 2021-2023, Arm Limited.
|
||
|
|
* SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
|
||
|
|
*/
|
||
|
|
|
||
|
|
#ifndef PL_MATH_ATANF_COMMON_H
|
||
|
|
#define PL_MATH_ATANF_COMMON_H
|
||
|
|
|
||
|
|
#include "math_config.h"
|
||
|
|
#include "estrinf.h"
|
||
|
|
|
||
|
|
#if V_SUPPORTED
|
||
|
|
|
||
|
|
#include "v_math.h"
|
||
|
|
|
||
|
|
#define FLT_T v_f32_t
|
||
|
|
#define P(i) v_f32 (__atanf_poly_data.poly[i])
|
||
|
|
|
||
|
|
#else
|
||
|
|
|
||
|
|
#define FLT_T float
|
||
|
|
#define P(i) __atanf_poly_data.poly[i]
|
||
|
|
|
||
|
|
#endif
|
||
|
|
|
||
|
|
/* Polynomial used in fast atanf(x) and atan2f(y,x) implementations
|
||
|
|
The order 7 polynomial P approximates (atan(sqrt(x))-sqrt(x))/x^(3/2). */
|
||
|
|
static inline FLT_T
|
||
|
|
eval_poly (FLT_T z, FLT_T az, FLT_T shift)
|
||
|
|
{
|
||
|
|
/* Use 2-level Estrin scheme for P(z^2) with deg(P)=7. However,
|
||
|
|
a standard implementation using z8 creates spurious underflow
|
||
|
|
in the very last fma (when z^8 is small enough).
|
||
|
|
Therefore, we split the last fma into a mul and and an fma.
|
||
|
|
Horner and single-level Estrin have higher errors that exceed
|
||
|
|
threshold. */
|
||
|
|
FLT_T z2 = z * z;
|
||
|
|
FLT_T z4 = z2 * z2;
|
||
|
|
|
||
|
|
/* Then assemble polynomial. */
|
||
|
|
FLT_T y = FMA (z4, z4 * ESTRIN_3_ (z2, z4, P, 4), ESTRIN_3 (z2, z4, P));
|
||
|
|
|
||
|
|
/* Finalize:
|
||
|
|
y = shift + z * P(z^2). */
|
||
|
|
return FMA (y, z2 * az, az) + shift;
|
||
|
|
}
|
||
|
|
|
||
|
|
#endif // PL_MATH_ATANF_COMMON_H
|