97 lines
3.1 KiB
C
97 lines
3.1 KiB
C
|
|
/*
|
||
|
|
* Single-precision vector cbrt(x) function.
|
||
|
|
*
|
||
|
|
* Copyright (c) 2022-2023, Arm Limited.
|
||
|
|
* SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
|
||
|
|
*/
|
||
|
|
|
||
|
|
#include "v_math.h"
|
||
|
|
#include "mathlib.h"
|
||
|
|
#include "pl_sig.h"
|
||
|
|
#include "pl_test.h"
|
||
|
|
|
||
|
|
#if V_SUPPORTED
|
||
|
|
|
||
|
|
#define AbsMask 0x7fffffff
|
||
|
|
#define SignMask v_u32 (0x80000000)
|
||
|
|
#define TwoThirds v_f32 (0x1.555556p-1f)
|
||
|
|
#define SmallestNormal 0x00800000
|
||
|
|
#define MantissaMask 0x007fffff
|
||
|
|
#define HalfExp 0x3f000000
|
||
|
|
|
||
|
|
#define C(i) v_f32 (__cbrtf_data.poly[i])
|
||
|
|
#define T(i) v_lookup_f32 (__cbrtf_data.table, i)
|
||
|
|
|
||
|
|
static NOINLINE v_f32_t
|
||
|
|
specialcase (v_f32_t x, v_f32_t y, v_u32_t special)
|
||
|
|
{
|
||
|
|
return v_call_f32 (cbrtf, x, y, special);
|
||
|
|
}
|
||
|
|
|
||
|
|
/* Approximation for vector single-precision cbrt(x) using Newton iteration with
|
||
|
|
initial guess obtained by a low-order polynomial. Greatest error is 1.5 ULP.
|
||
|
|
This is observed for every value where the mantissa is 0x1.81410e and the
|
||
|
|
exponent is a multiple of 3, for example:
|
||
|
|
__v_cbrtf(0x1.81410ep+30) got 0x1.255d96p+10
|
||
|
|
want 0x1.255d92p+10. */
|
||
|
|
VPCS_ATTR v_f32_t V_NAME (cbrtf) (v_f32_t x)
|
||
|
|
{
|
||
|
|
v_u32_t ix = v_as_u32_f32 (x);
|
||
|
|
v_u32_t iax = ix & AbsMask;
|
||
|
|
|
||
|
|
/* Subnormal, +/-0 and special values. */
|
||
|
|
v_u32_t special = v_cond_u32 ((iax < SmallestNormal) | (iax >= 0x7f800000));
|
||
|
|
|
||
|
|
/* Decompose |x| into m * 2^e, where m is in [0.5, 1.0]. This is a vector
|
||
|
|
version of frexpf, which gets subnormal values wrong - these have to be
|
||
|
|
special-cased as a result. */
|
||
|
|
v_f32_t m = v_as_f32_u32 ((iax & MantissaMask) | HalfExp);
|
||
|
|
v_s32_t e = v_as_s32_u32 (iax >> 23) - 126;
|
||
|
|
|
||
|
|
/* p is a rough approximation for cbrt(m) in [0.5, 1.0]. The better this is,
|
||
|
|
the less accurate the next stage of the algorithm needs to be. An order-4
|
||
|
|
polynomial is enough for one Newton iteration. */
|
||
|
|
v_f32_t p_01 = v_fma_f32 (C (1), m, C (0));
|
||
|
|
v_f32_t p_23 = v_fma_f32 (C (3), m, C (2));
|
||
|
|
v_f32_t p = v_fma_f32 (m * m, p_23, p_01);
|
||
|
|
|
||
|
|
/* One iteration of Newton's method for iteratively approximating cbrt. */
|
||
|
|
v_f32_t m_by_3 = m / 3;
|
||
|
|
v_f32_t a = v_fma_f32 (TwoThirds, p, m_by_3 / (p * p));
|
||
|
|
|
||
|
|
/* Assemble the result by the following:
|
||
|
|
|
||
|
|
cbrt(x) = cbrt(m) * 2 ^ (e / 3).
|
||
|
|
|
||
|
|
We can get 2 ^ round(e / 3) using ldexp and integer divide, but since e is
|
||
|
|
not necessarily a multiple of 3 we lose some information.
|
||
|
|
|
||
|
|
Let q = 2 ^ round(e / 3), then t = 2 ^ (e / 3) / q.
|
||
|
|
|
||
|
|
Then we know t = 2 ^ (i / 3), where i is the remainder from e / 3, which is
|
||
|
|
an integer in [-2, 2], and can be looked up in the table T. Hence the
|
||
|
|
result is assembled as:
|
||
|
|
|
||
|
|
cbrt(x) = cbrt(m) * t * 2 ^ round(e / 3) * sign. */
|
||
|
|
|
||
|
|
v_s32_t ey = e / 3;
|
||
|
|
v_f32_t my = a * T (v_as_u32_s32 (e % 3 + 2));
|
||
|
|
|
||
|
|
/* Vector version of ldexpf. */
|
||
|
|
v_f32_t y = v_as_f32_u32 ((v_as_u32_s32 (ey + 127) << 23)) * my;
|
||
|
|
/* Copy sign. */
|
||
|
|
y = v_as_f32_u32 (v_bsl_u32 (SignMask, ix, v_as_u32_f32 (y)));
|
||
|
|
|
||
|
|
if (unlikely (v_any_u32 (special)))
|
||
|
|
return specialcase (x, y, special);
|
||
|
|
return y;
|
||
|
|
}
|
||
|
|
VPCS_ALIAS
|
||
|
|
|
||
|
|
PL_SIG (V, F, 1, cbrt, -10.0, 10.0)
|
||
|
|
PL_TEST_ULP (V_NAME (cbrtf), 1.03)
|
||
|
|
PL_TEST_EXPECT_FENV_ALWAYS (V_NAME (cbrtf))
|
||
|
|
PL_TEST_INTERVAL (V_NAME (cbrtf), 0, inf, 1000000)
|
||
|
|
PL_TEST_INTERVAL (V_NAME (cbrtf), -0, -inf, 1000000)
|
||
|
|
#endif
|